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NUMERICAL SOLUTIONS IN THREE
DIMENSIONAL ELASTOSTATICS

T. A CRUSE

Carnegie-Mellon University, Pittsburgh, Pennsylvania

Abstract--A numerical solution capability is developed for the solution of problems in three dimensional elasto­
statics. The solution method utilizes singular integral equations which can be solved numerically for the unknown
surface tractions and displacements for the fully mixed boundary value problem, The method is independent of the
surface shape and data specification and has been fully automated. Some sample problems are solved to verify
the formulation. In addition the method has been used to investigate a significant problem with stress singularities.

INTRODUCTION

THE considerable success achieved using integral equations in the analysis of two dimen­
sional elastostatics [1], transient elastodynamics [2,3], and elastic inclusions [4] leads one
to consider extending the solution capability to three-dimensional problems. The solution
method utilizes the numerical solution ofintegral equations analogous to Green's boundary
formula in potential theory. It is referred to in this paper as the direct potential method.
In the direct potential method integral equations are written directly in terms of the physical
boundary tractions and displacements with no need to introduce non-physical potentials
or other auxiliary functions. The advantages to the analyst using the direct potential method
are the reduced dimension of the numerical problem (the approximations and numerical
analysis take place only at the surface) and its great generality. The method employs only
real, physical variables and is independent of body shape and connectivity. Most im­
portantly, the method appears to be a valuable new tool in the analysis of three-dimensional
problems. The present analysis considers the extension of the direct potential method to
problems of three dimensional elastostatics,

The direct potential method is restricted to linear elasticity but may be applied with
equal ease for any boundary configuration to the displacement problem, the traction
problem and to the fully mixed boundary value problem. The method contrasts with
solution methods in three dimensional elasticity based on special geometries and the use
of transforms such as in [5]. The method also contrasts with numerical procedures such as
finite elements [6] and finite differences [7] in that numerical approximations are made
only for the surface tractions and displacements and not on the entire field.

The numerical solution of the integral equations shows remarkable stability as to the
surface element arrangements thus allowing efficient analysis of problems with stress
concentrations. One such problem, the axial tension member with a completely fixed end,
is investigated numerically in this paper and the results compared to available data in the
two dimensional counterpart. The numerical procedures have been completely automated
and the results obtained on the UNIVAC 1108 computer. Three dimensional problems
with cracks and internal voids are now being investigated.
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The notation used in this paper is the usual Cartesian tensor notation with implied
summation on repeated indices and partial differentiation denoted by the comma-index.
The integral equations and the vector and tensor identities for the interior displacements
and stresses are derived in the first part of this paper. The numerical solution of the integral
equations is discussed in part two and in the third part the method is applied to some
example problems.

INTEGRAL EQUAnON FORMULAnON

The analysis in this paper is restricted to the analysis of classical elastostatic problems
for which the material may be taken as isotropic and homogeneous. The usual Navier
equations of equilibrium in the absence of body forces and for Poisson's ratio v are given by

I
. ---u· ··+u·· = 01- 2v 1,1) ),11

(i,j = 1,2,3) (1)

(3)

for the displacement vector, u;(x) where x denotes the orthogonal cartesian coordinates
Xl' x 2 , x 3 . The solution to this differential equation must also satisfy appropriate boundary
conditions for the displacements and tractions on the surface S, respectively given as

Ui(X) = qi' XES(Ui!

and (2)

ti(X) = (Jijn j = Pi' x E SUi!'

The unit vector ni is the outward normal vector for the body R. The stress components (Jij
and displacement gradients are related by Hooke's law

2J11'
(Jij = 1_2vbijum.m+J1(Ui.j+Uj.;)

where J1 is the shear modulus of the material.
Letting the distance between the field point x with coordinates Xl' X 2 and x 3 and the

load point P with coordinates ~ l' ~ 2 and ~ 3 be given by

r = [(Xi-~;)(Xi-~in1 (4)

the well known solution [8] to Kelvin's problem of the point load in the infinite body is
represented by the tensor field

Uij = 4~J1(~) [~;~~)bij+4(f_ v{f.J (5)

The displacement and traction vectors corresponding to point loads in each of the three
coordinate directions are given .by the operations

(6)

on the base vectors ej' In equation (5) and in what follows all differentiation is with respect
to the field point x, that is



and
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where the normal is evaluated at x also. The traction vectors for Kelvin's problem are
determined from equation (5) and are given by the tensor components,

(7)

where k = [(1-2v)j2(1- v)].
Now letting the load point p be surrounded by a small spherical region, R*, with the

surface, S*, Betti's third identity may be written as

(8)

where U i , t i are the displacements and tractions for the unknown stress state. By taking the
limits for R* --+ 0 in the usual way (see [2]) the following identity results

Uj(P) = - Is Ui(Q)1]i(Q, p) dS(Q)+ Is t;(Q)Uji(Q, p) dS(Q), (9)

for the boundary point Q(x). Equation (9) is Somigliana's identity for the displacements
[8, p. 245J inside the body, R, due to known surface tractions and displacements. The interior
stress state may be generated by differentiation ofequation (9) with respect to the load point
p and is given by

(ii/P) = - Is Uk(Q)Ski/Q, p) dS(Q) + Is tk(Q)Dki/Q, p) dS(Q).

By utilizing the identity

8r 8r

the tensors Dkij and Skij are found to be

and

(10)

(11 )

(12)

(13)
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A number of schemes have been proposed for the solution of equati.on (9). The Russian
mechani.cians [9-11] have determined similar equations for the two and three dimensional
elasticity problems. The method they have proposed for the solution ofequation (9) involves
the introduction of auxiliary functions or surface densities which replace the unknown
surface tractions and displacements. Using standard procedures of potential theory [l2]
they obtain approximate relations for the surface density functions. However, recent work
[13J has shown that this procedure does not apply for surfaces which are not smooth in the
sense of Liapounov.

Another procedure for the solution of equations of the type similar to equation (9) was
recently developed [IJ for two dimensional elastostatic problems and extended [2, 3J to the
two dimensional elastodynamic problems. This paper reports the successful extension of
this work to the three dimensional elastostatic problem. It is found that the method suffers
none of the numerical instabilities indicated in [13].

Let P(x) be a boundary point distinct from Q(x). If the interior point p(x) in equation (9)
is taken to approach point P from within the body a limiting form ofequation (9) is obtained.
A discussion ofthis procedure is contained in Appendix 1. The limiting form of equation (9)
which is valid for P(x) not located at an edge or corner is given by

~UiP)+LUj(Q)1)i(Q, P)dS(Q) = Lfj(Q)Uji(Q, P)dS(Q) (14)

where the integrals are interpreted in the sense of the Cauchy Principal Value.
Equation (14) can be viewed as the constraint equation relating surface tractions to sur­

face displacements. In physical problems the tractions and displacements are not known
concurrently over the entire surface. Thus, the mechanism of solution is to regard equation
(14) as a set of coupled integral equations of varying types according as data appropriate to
the traction, displacement or mixed boundary value problems are prescribed. The un­
knowns of the integral equations are the remaining data not prescribed. The numerical
solution of equation (14) is discussed in the following section.

NUMERICAL SOLUTION OF THE INTEGRAL EQUATIONS

General analytic solutions to the integral equations (14) are not available and it is
therefore necessary to solve the equations numerically. The integral equations reduce to
algebraic equations by discretizing the boundary data. Following the procedure used
previously in acoustics [14] the two-dimensional surface, S, is assumed to be made up of
plane triangular elements, LlSi • Although attempts have been made [15J to account for
the surface curvature this can only be done approximately and imposes a large burden on
the analysis. As important simplifications in the analysis occur by assuming plane surface
elements and since many physical problems involve flat surfaces the assumption is made
that the surface is piecewise flat. It is further assumed that on each element LlSi of the surface
the surface data of traction and displacement may be assumed constant. Each surface
element is denoted by its centroidal point, Pm or Qn, depending on whether the point is
fixed or variable with respect to the integration.

When the surface data is discretized in this way, the integral equations (14) may be seen
to reduce to the following algebraic equations.

~UiPm)+L u;(Qn) f 1]i(Pm, Q) dS(Q)
n t\Sn.

L ti(Qn) f Uji(Pm, Q) dS(Q).
n L\Sn

(J 5)
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The values uJQn), tj(Qn) are now the constant approximations to ui , ti on element t1Sn ·

The integrals

t1TJPm, Qn) = f 1;iPm, Q) dS(Q)
1\S"

and

t1Uij(pm, Qn) = f Uij(pm, Q) dS(Q)
1\S"

(16)

may be calculated exactly by knowing the size, orientation and location of t1S n and the
point Pm. The results of these integrals for the case when Pm = Qn are given in Appendix 2.
A more complete discussion of all the integrals may be found in [16]. The points Pm and
Qn are taken at the centroids of the elements t1Sn to account best for the variation of Ui

and t i on !1Sn" Equation (15) may now be written as

(17)
n n

which has the matrix representation

g[lJ+[!1TJ} {u} = [t1U]{t}. (18)

The matrix [IJ is the identity matrix. In general, the solution to the mixed boundary-value
problem is obtained by first appropriately rearranging the columns in equation (18) so that
all unknown data appear in the vector {x} :

[A]{x} = [BHy}. (19)

When rearranging, the columns must be scaled to maintain the proper conditioning of
matrix [A]. This scaling should maintain the diagonal terms in [AJ at the same order of
magnitude. Equation (19) has been solved by a standard Gauss reduction scheme on [AJ
followed by an iteration to refine the solution {x}. As the matrix [AJ is weighted toward the
diagonal, it is well conditioned and in actual numerical examples a single iteration usually
achieves refinements in {x} on the order of I{!1x/x} I < 0·001. These examples are discussed
in the next section.

Finally, after solving equation (19), the now completely known boundary data may be
used to determine the solution for the internal displacements and stresses by direct integra­
tion of the identities (9) and (10):

and

uip) = - L uj(Qn)!11jj(Qn, p)+ L lj(Qn)!1Ujj(Qn, p)
n n

(Jjj(p) = - L uk(Qn)t1SkjiQn, p) +L tk(Qn)t1DkiiQn, p).
n n

(20)

(21)

The integrations to determine t1S and !1D are presently performed numerically as discussed
in [16]. Any number of interior solutions may be made once the boundary solution is
obtained. Since the solution is performed at pre-selected points, the analyst may concentrate
on particular areas of interest and is not burdened with complete field solutions. No approx­
imations to the field equations are necessary as all approximations are made at the surface.
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NUMERICAl, RESULTS

1. Some test prohlems

Some elementary boundary value problems were solved to determine the validity of
the approximations discussed in the last section as well as to investigate the behavior of
the numerical procedures under different circumstances. The computed results are given for
a cube with unit dimensions. In all cases sufficient displacements are set to zero to eliminate
the rigid body motion. Typical surface element arrangements are shown in Fig. 1 for 12,24
and 48 surface elements. All results have been obtained using a single, general source
program written in Fortran language.t Required data includes the material properties,
the surface element arrangement, the known surface tractions and displacements which are
assumed constant over each surface element, and the locations of internal points where the
displacements and stresses are desired.

In the first series of problems the unit cube is loaded in a state of uniaxial tension by the
application of a normal traction to one end. On the other end and on two normal faces the
normal displacement component was set equal to zero. The required tractions at these
elements are then part of the solution. The surface displacements in the axial and transverse
directions are indicated in Fig. 2 for the case of 12 triangles and values of Poisson's ratio
varying from one-quarter to one-half. The results for v = 0·3 giving the surface tractions
and displacements and internal stresses for twelve and twenty-four surface triangles are

(01

(bl

(el

FIG. I. Surface element arrangements for unit cube.

t All problems in this paper were run on a UNIVAC 1108 computer utilizing external drum storage. A typical
run for fifty surface elements and no use of symmetry is around five minutes.
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FIG. 2. Surface displacements for the uniaxial model.

given in Table 1. The numerical integrations for the interior stresses are performed to about
the same accuracy in both. The second elementary problem was to solve the case for a
uniform shear stress applied to the unit cube in one of its planes. This problem was solved
for the case of 12, 24 and 48 surface elements. Again sufficient surface displacements were
fixed to zero to eliminate the rigid body motion. The results for the non-zero shear strains
based on surface displacements and internal stresses at two points are given in Table 2.

A number of features of the method can be seen from these simple examples. First, and
most significantly, the basic assumptions of the last section are justified by the very satis­
factory results achieved. Also of significant interest is the accuracy with which surface

TABLE 1. PARTIAL DATA FOR THE UNIT CUBE WITH 12 AND 24 ELEMENTS UNDER UNIAXIAL

TENSION. p, INCLUDING SURFACE REACTIONS, SURFACE DISPLACEMENTS, AND INTERNAL

STRESSES AT THE POINTS (0-4, 0'4, 0'4) AND (0'6, 0'6, 0'6). ONLY TYPICAL RESULTS ARE

SHOWN. POISSON'S RATIO = 0·30

N = 12 N = 24 Exact

Reactions (tJp): 1·000 1·0016 1·0000
1·000 1·0000
0·000 0·0006 0·0000

Maximum axial displacement (uJ,)): 1·025 1·022 1·000
Maximum trans. displacement 1·097 1·032 1·000
Internal stresses:

{Jx/p {Jy/p Txy/p Tvz/p
N = 12 (0'4, 0-4, 0'4) 1·030 -0·074 -0,010 0·021

(0'6,0'6, 0'6) 1·028 -0·077 0·012 -0,034
N = 24 (0-4, 0-4, 0'4) 1·031 -0,043 0·004 -0,015

(0'6,0'6, 0'6) 1·033 -0,044 0·003 -0,014
Exact 1·000 0·00 0·00 0·00



1266 T. A. CRUSE

TABLE 2. PARTIAL DATA FOR THE UNIT CUBE LOADED IN PURE SHEAR STRESS, p, IN ONE OF ITS

PLANES, INCLUDING COMPUTED SHEAR STRAIN AND SOME INTERNAL STRESSES FOR N = 12.24
AND 48 ELEMENTS. )'"r = pi /1.

N }'xz/;'rcf ([,II' ',,/[>
-----~._---_._--~-~_.,._,~--_.._-_._----------~----

12 0·863 0·09 ··0·02 (}69 ··0·002 «()-4,()A.OA)
0·06 -'()'()4 0·67 --()-03 «()·6. 0-6. 0'6)

24 0·957 0'02 -0-05 0-89 O-()5 (()-4. ()'4, ()-41
(}02 -·()-05 ()89 -()-05 «()-6. 0-6_ 0-6)

48 ()'96() -()'()1 ()'02 0-94 ()'02 (OA,OA,OA)
-0'0()9 ()-02 ()'94 ()'02 (()'6, 0·6. 0'6)

Exact I-O()O ()·()O (l.()() I·()() o-()()

tractions are calculated. This feature is used to full advantage in the example of the fixed-end
problem discussed later. It should be noted that refinement of the elements does not affect
the displacement results for the uniaxial problem nearly as much as for the shear problem.
This is a reasonable result as the shear problem constitutes a greater degree of approxima­
tion with the constant displacement assumption on each element. Refinement of the surface
elements does lead to improved internal stresses although good results may be achieved
for a reasonably small number of surface elements.

2. The fixed-end problem

The significant problems of determining three-dimensional stress concentrations are
well suited to this analysis procedure. To demonstrate this the three dimensional equivalent
to the "Hanging-Plate Problem" was investigated. In this problem a body (again taken as
the unit cube as shown in Fig. 3) is loaded by an axial load at one end while the load-

FIG. 3. Surface element arrangements for the fixed end problem.
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reacting end is fixed against all motion, including the transverse displacements arising from
the non-zero Poisson's ratio. It is known [17J that for the case ofplane strain stress singulari­
ties of the order r- 0

'
35 occur local to the edge. In the three dimensional problem the same

behavior is expected at some distance from the corner where plane strain may be said to
govern. However, the nature ofthe singularity at the corner is unknown. It may be expected
because of the discontinuous shear stress in both directions at the corner that the stress
concentration is going to be greater than that for plane strain. In addition to these two
particular behaviors there will be a transition region of, as yet, undetermined extent between
the corner solution and the plane strain solution.

As mentioned earlier, the boundary solution of the direct potential method tends to
calculate tractions very accurately assuming, ofcourse, a reasonable set of surface elements.
Therefore, the cube was divided into surface elements as shown in Fig. 3 with a coarse
mesh on all faces except the fixed end. A variety of solutions were obtained for various
element arrangements on the fixed end, all based on the one shown. A very important feature
of the analysis that was discovered at this time was that a single element at the fixed end
could be further subdivided without seriously altering the solution already obtained for the
other elements. For example, the results shown in Figs. 5and 6 were obtained by subdividing
one of the corner elements into about twenty elements. The change in the solution at the
adjacent elements was less than five per cent. This feature permitted local analysis without
the necessity of a prohibitive number of elements on the whole surface.

The results for the normal and shear stresses along a mid-line of the cross-section at the
wall are shown in Fig. 4. These results are plotted along with the solution for the circular
cylinder obtained by Pickett using Fourier series [18].
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FIG. 4. Stress concentrations along the midline of the fixed end.
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The two solutions are essentially the same and the differences between the curves is most
likely the effect of the different geometries as Pickett was working with the cylinder. It
should also be noted that Pickett complains of the very bad convergence of his series at
the end and that as he got near the edge at the fixed end his results no longer converged.
No such difficulty is encountered in the direct potential method solution of this problem.
The analyst need only refine the surface element sizes to obtain better resolution in areas of
high stress gradients.

Ofgreater interest are the results in the neighborhood of the corner as indicated in Figs. 5
and 6. These figures are machine drawn contour plots of the normal stress concentration
and total shear stress (r;v + r;zrt concentration for the region t ::;; y < ~. and .~ ::;; z < ~.

The contours were drawn based on data obtained at more than 30 subelements in the corner.
It should be noted that the contours are only drawn to within 0·012 in. of the edge as
this was as close to the edge as uniform data was obtained. The stress concentration due
to the corner is clearly indicated and, as expected,is considerably greater than that found
away from the corner. As indicated in Fig. 5 the normal stress concentration factor even
closer to the corner is almost 12. The region of transition from plane strain to the corner
condition is also clearly indicated in Figs. 5 and 6. This region appears to be significant to
a distance of about ten per cent of the cube width from the edge.

In Fig. 7 the results for the interior stresses (Jx and (Jy are plotted for various lines parallel
to the x-axis. The results are extrapolated to the known values at the fixed surface. The

I1,0,..-......-~
I_B
•

FIG. 5. Normal stress concentrations in the corner.



Numerical solutions in three dimensional elastostatics 1269

FIG. 6. Total shear stress concentrations in the corner.

FIG. 7. Internal stresses.
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indicated errors for interior points very near the fixed end are attributable to numerically
integrating over the r - 3 singularity in equation (13). This behavior is typical of the method
and may be eliminated by numerically calculating the in-plane components at the surface
using the surface tractions and surface displacements. A means for doing this is discussed
in [4]. Other problems with stress concentrations such as internal cracks and surface
notches with various geometries are now being investigated.
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APPENDIX 1

Somigliana's identity for the displacement vector at a point p(x) in R is given by equation
(9) as

u}p) = -f u;(Q)1j;(Q, p) dS(Q) +f t;(Q)Uji(Q,p)dS(Q).
s s

(1.1 )
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The integrals in equation (1.1) are analogous to double and single layer scalar potentials.
These integrals may be rewritten in the form

(1.2)

(1.3)

and

¢/p) = i Jli(Q)Uji(Q, p) dS(Q).

Let P(x) be a point on the boundary.s of R which is not located at an edge. Equation (1.2)

may then be written as

t/J/p) = f [ai(Q)-ai(P)]'Iji(Q,p)dS(Q)+f ai(P)'Iji(Q,p)dS(Q). (1.4)
s s

If the surface density function a;(Q) satisfies a Holder condition on S, it can be shown that
the first integral in equation (1.4) is continuous for p ---+ P. If

lim t/J.(p) = t/J.(P)
p-> p J J

it can be verified that the second integral in equation (1.4) has the discontinuity given by

where the second integral is to be interpreted in the sense of the Cauchy Principal Value.
Then

t/J/P) = -!a/P)+Lai(Q)'Iji(Q,P)dS(Q).

By similar methods it can be shown that

¢ /P) Llli(Q)U j,(Q, P) dS(Q)

(1.6)

(1.7)

for the density function Jli(Q) bounded on the surface. Combining the results of equation
(1.6) and equation (1.7) the boundary constraint equation is obtained

(1.8)

Equation (1.8) is strongly suggestive of Fredholm equations for the boundary value prob­
lems of the first and second kind. However, the equations are singular due to the presence
of the term

in equation (7). That is, it can be shown that



1272 T. A. CRUSE

whereas a limit of zero is required for Fredholm kernels. It has been shown [IlJ, however,
that the integral equations (1.8) are regular for all admissible values of Poisson's ratio and
that the index of the operator K[ujJ in equation (1.8) is zero. Therefore, the Fredholm
alternatives apply and all normal problems are soluble.

APPENDIX 2

When the fixed point P and the field point Qare in the same triangles, the kernels V ij

and T;j contain singularities of the order I/r(P, Q) and I/r2(p, Q), respectively. As noted
before these integrals are to be evaluated in the sense of the Cauchy Principal Value in that
the region very close to the point P is to be excluded from the integral and the integral is to
be evaluated as that region shrinks toward zero area. By letting the surface be represented
by plane elements it is possible to perform these integrals exactly.

Let the triangle be shown in a local coordinate system with the origin at P such that
side 1-2 is parallel to the (1 axis (see Fig. 8). It will be shown that both integrals (16) reduce
to path integrals. The results will be obtained only for the path 1-2 as the total result is
easily obtained from that.

In the integral of the kernel V ij change to polar coordinates such that the integral (16)
becomes

AVij = lim {_I f21t [(r(e)-p)(~Jij+_l-r.ir.j)J de}
p-o 4rr:jl. Jo 4(1- v) 4(1 v)

which, in the limit becomes

'E:-__-j- -.L__ ~ I

FIG. 8. Scheme for exact integration of /),U and /),T.
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In the integral of Tij it is seen that, for orli'Jn = 0, by using the identity

GijkGrSknr(~).s = r\(nI.i-n;r,)

the integral (16) reduces to

Using a form of Stokes' theorem this reduces to the line integral

ATij = 4~ 8ijkf~ dXk'

If the variables are now changed to the local variables, then

1273

or
OXi

. o( 1 0 0(2 . 0 0sm 0 - +cos -;;- = sm eIi+ cos e2i
OX i uX i

where eli and eZi are the direction cosines of the (1 and (z axes in the global coordinate
system. Then it is also found that

and along side 1-2 r(O) becomes

r(O) = Dlcos O.

Finally, by substitution of these results it is found that

D {3 -4v
AUi)t = - 4njl 4(1_v)Oij[log(tanO+1/cosO)J

1 .
+4(1- v)[elie1i -sm 0+ log(tan 0+ 11cos 0))

+ eZieZj sin 0 - (eueZj+ eZielj) cos OJ} I~~

and that

Z k Z
A1;) 1 = 4rr 8ijke lk[log«( 1 +r)Jll .

The total results are then obtained by reorienting the local coordinate system such that the
(1 axis is in turn parallel to the 2-3 and 3-1 sides and adding the contributions. The results
are thereby easily obtained in terms of the coordinates of P and the corners 1,2 and 3 of
the triangle.

(Received? November 1968; revised 19 May 1969)
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AOCTpaKT-j],aeTCH crroco6HoCTh '1l1CneHHOro peweHlIH 3a,lla'l TpexMepHoH CTaTI1KI1 yrrpyroro Tena ,
MeToJ\ peWeHI1'H I1'CrrOJIh3yeT cl1'HryJIJlpHble lIHTerpanhHble '1paBHeHI1'JI. MOlKHO HX pelllHTb HyMeplf'leCKIf,
J\nJl HeH3BeCTHhlX lloBepxHocTHblX YCIfJIIfH M rrepeMeUleHlIH nOJIHOH cMelliaHoH KpaeBOH 3aJ\a'lH. MeTOJ\
He 3aBlfCHT OT (j}OPMbl nOBepXHOCTH If lloJ\po6HblX J\aHHbIX If BIlOJIHe aBTOMaTHpH30BaH, PellialOTCH
HeKOTophle rrpOCTble rrpHMephl ,lIJIS!. llpOBepKH (j}OPMYJIHPOBKIf. KpOMe '}Toro, Ifcrro,1b1yeTcH MeTOn nJ1!l
Hccrre.n.oBaHHSI BalKHoH 1aJ\a'lH C CflHryrrHpHocTlIMH HarrplilKeHIIH,


